Minggu, 27 Maret 2011

Kode ASCII, BCD, BCDIC, EBCDIC, BAUDOT

ASCII Kode
Kode Standar Amerika untuk Pertukaran Informasi atau ASCII (American Standard Code for Information Interchange) merupakan suatu standar internasional dalam kode huruf dan simbol seperti Hex dan Unicode tetapi ASCII lebih bersifat universal, contohnya 124 adalah untuk karakter "|". Ia selalu digunakan oleh komputer dan alat komunikasi lain untuk menunjukkan teks. Kode ASCII sebenarnya memiliki komposisi bilangan biner sebanyak 8 bit. Dimulai dari 0000 0000 hingga 1111 1111. Total kombinasi yang dihasilkan sebanyak 256, dimulai dari kode 0 hingga 255 dalam sistem bilangan Desimal.
BCD Kode
Binary Coded Decimal (BCD or "8421" BCD) numbers are made up using just 4 data bits (a nibble or half a byte) similar to the Hexadecimal numbers we saw in the binary tutorial, but unlike hexadecimal numbers that range in full from 0 through to F, BCD numbers only range from 0 to 9, with the binary number patterns of 1010 through to 1111 (A to F) being invalid inputs for this type of display and so are not used as shown below.
Decimal Binary Pattern BCD
8 4 2 1
0 0 0 0 0 0
100011
200102
300113
401004
501015
601106
701117
 
Decimal Binary Pattern BCD
8 4 2 1
8 1 0 0 0 8
910019
101010Invalid
111011Invalid
121100Invalid
131101Invalid
141110Invalid
151111Invalid

BCD to 7-Segment Display Decoders

A binary coded decimal (BCD) to 7-segment display decoder such as the TTL 74LS47 or 74LS48, have 4 BCD inputs and 7 output lines, one for each LED segment. This allows a smaller 4-bit binary number (half a byte) to be used to display all the denary numbers from 0 to 9 and by adding two displays together, a full range of numbers from 00 to 99 can be displayed with just a single byte of 8 data bits.

BCD to 7-Segment Decoder

BCD to 7-segment Decoder
The use of packed BCD allows two BCD digits to be stored within a single byte (8-bits) of data, allowing a single data byte to hold a BCD number in the range of 00 to 99.
An example of the 4-bit BCD input (0100) representing the number 4 is given below.

Example No1

BCD Decoder Circuit
In practice current limiting resistors of about 150Ω to 220Ω would be connected in series between the decoder/driver chip and each LED display segment to limit the maximum current flow. Different display decoders or drivers are available for the different types of display available, e.g. 74LS48 for common-cathode LED types, 74LS47 for common-anode LED types, or the CMOS CD4543 for liquid crystal display (LCD) types.
Liquid crystal displays (LCD´s) have one major advantage over similar LED types in that they consume much less power and nowadays, both LCD and LED displays are combined together to form larger Dot-Matrix Alphanumeric type displays which can show letters and characters as well as numbers in standard Red or Tri-colour outputs.

BCDIC Kode

EBCDIC Kode  
ASCII is not the only format in use out there. IBM adopted EBCDIC (Extended Binary Coded Decimal Interchange Code) developed for punched cards in the early 1960s and still uses it on mainframes today. It is probably the next most well known character set due to the proliferation of IBM mainframes. It comes in at least six slightly differing forms, so again here is the most common. 


BAUDOT Kode
This table presents a programmer's quick reference to the "Baudot" character set.
IMPORTANT NOTE: The code presented here is with reference to usage in the computer industry. The original, true, baudot code differs from that presented below. The following table presents CCITT Alphabet No 2 which was developed from Murray's code which was in turn developed from Baudot's code. Baudot's code was replaced by Murray's code in 1901. And ITA2 replaced both by the early 1930's, so virtually all "teletype" equipment made in the U.S. uses ITA2 or the U.S. national version of the code.
The 'baudot' code has been used extensively in telegraph systems. It is a five bit code invented by the Frenchman Emile Baudot in 1870. Using five bits allowed 32 different characters. To accomodate all the letters of the alphabet and numerals, two of the 32 combinations were used to select alternate character sets. The figures column is valid after a figures shift character has been received. It remains in effect until a letters shift is received, after which the letters column should be referred to (and vice-versa).
Two 'Baudot codes' are in common useage. The first as used in America. The second, used in Europe, is also termed the CCITT Alphabet No. 2. In each, the 'letters' are identical, but the 'figures' differ.
The five-bit words are bracketed by a start bit (space) and a stop bit (mark). Idling is shown by the 'marking' state. Words are transmitted LSB first.
Binary
Decimal
Hex
Octal
Letter
U.S.
Figures
CCITT No.2
Figures
00000
0
0
0
N/A
N/A
N/A
00001
1
1
1
E
3
3
00010
2
2
2
LF
LF
LF
00011
3
3
3
A
-
-
00100
4
4
4
Space
Space
Space
00101
5
5
5
S
BELL
'
00110
6
6
6
I
8
8
00111
7
7
7
U
7
7
01000
8
8
10
CR
CR
CR
01001
9
9
11
D
$
WRU
01010
10
A
12
R
4
4
01011
11
B
13
J
'
Bell
01100
12
C
14
N
,
,
01101
13
D
15
F
!
!
01110
14
E
16
C
:
:
01111
15
F
17
K
(
(
10000
16
10
20
T
5
5
10001
17
11
21
Z
"
+
10010
18
12
22
L
)
)
10011
19
13
23
W
2
2
10100
20
14
24
H
#
£
10101
21
15
25
Y
6
6
10110
22
16
26
P
0
0
10111
23
17
27
Q
1
1
11000
24
18
30
O
9
9
11001
25
19
31
B
?
?
11010
26
1A
32
G
&
&
11011
27
1B
33
Figures Shift
Figures Shift
Figures Shift
11100
28
1C
34
M
.
.
11101
29
1D
35
X
/
/
11110
30
1E
36
V
;
=
11111
31
1F
37
Letters Shift
Letters Shift
Letters Shift

Kamis, 17 Maret 2011

Prinsip Komunikasi Data

Dalam jaringan komputer mempunyai aturan-aturan baku atau prinsip-prinsip baku dalam komunikasi data,  ini dikeluarkan oleh ISO (International Standard Organization) yaitu model referensi OSI (Open System Interconnection). Maka dengan adanya model OSI ini semua vendor perangkat telekomunikasi memiliki pedoman dalam mengembangkan protokolnya.
Model referensi jaringan terbuka OSI atau OSI Reference Model for open networking adalah sebuah model arsitektural jaringan yang dikembangkan oleh badan International Organization for Standardization (ISO) di Eropa pada tahun 1977. OSI sendiri merupakan singkatan dari Open System Interconnection. Model ini disebut juga dengan model “Model tujuh lapis OSI” (OSI seven layer model).
Sebelum munculnya model referensi OSI, sistem jaringan komputer sangat tergantung kepada pemasok (vendor). OSI berupaya membentuk standar umum jaringan komputer untuk menunjang interoperatibilitas antar pemasok yang berbeda. Dalam suatu jaringan yang besar biasanya terdapat banyak protokol jaringan yang berbeda. Tidak adanya suatu protokol yang sama, membuat banyak perangkat tidak bisa saling berkomunikasi.
Model referensi ini pada awalnya ditujukan sebagai basis untuk mengembangkan protokol-protokol jaringan, meski pada kenyataannya inisatif ini mengalami kegagalan. Kegagalan itu disebabkan oleh beberapa faktor berikut:
  • Standar model referensi ini, jika dibandingkan dengan model referensi DARPA (Model Internet) yang dikembangkan oleh Internet Engineering Task Force (IETF), sangat berdekatan. Model DARPA adalah model basis protokol TCP/IP yang populer digunakan.
  • Model referensi ini dianggap sangat kompleks. Beberapa fungsi (seperti halnya metode komunikasi connectionless) dianggap kurang bagus, sementara fungsi lainnya (seperti flow control dan koreksi kesalahan) diulang-ulang pada beberapa lapisan.
  • Pertumbuhan Internet dan protokol TCP/IP (sebuah protokol jaringan dunia nyata) membuat OSI Reference Model menjadi kurang diminati.
Pemerintah Amerika Serikat mencoba untuk mendukung protokol OSI Reference Model dalam solusi jaringan pemerintah pada tahun 1980-an, dengan mengimplementasikan beberapa standar yang disebut dengan Government Open Systems Interconnection Profile (GOSIP). Meski demikian. usaha ini akhirnya ditinggalkan pada tahun 1995, dan implementasi jaringan yang menggunakan OSI Reference model jarang dijumpai di luar Eropa.
OSI Reference Model pun akhirnya dilihat sebagai sebuah model ideal dari koneksi logis yang harus terjadi agar komunikasi data dalam jaringan dapat berlangsung. Beberapa protokol yang digunakan dalam dunia nyata, semacam TCP/IP, DECnet dan IBM Systems Network Architecture (SNA) memetakan tumpukan protokol (protocol stack) mereka ke OSI Reference Model. OSI Reference Model pun digunakan sebagai titik awal untuk mempelajari bagaimana beberapa protokol jaringan di dalam sebuah kumpulan protokol dapat berfungsi dan berinteraksi.
Struktur tujuh lapis model OSI, bersamaan dengan protocol data unit pada setiap lapisan
OSI Reference Model memiliki tujuh lapis, yakni sebagai berikut :
Lapisan ke- Nama lapisan Keterangan
7 Application layer Berfungsi sebagai antarmuka dengan aplikasi dengan fungsionalitas jaringan, mengatur bagaimana aplikasi dapat mengakses jaringan, dan kemudian membuat pesan-pesan kesalahan. Protokol yang berada dalam lapisan ini adalah HTTP, FTP, SMTP, dan NFS.
6 Presentation layer Berfungsi untuk mentranslasikan data yang hendak ditransmisikan oleh aplikasi ke dalam format yang dapat ditransmisikan melalui jaringan. Protokol yang berada dalam level ini adalah perangkat lunak redirektor (redirector software), seperti layanan Workstation (dalam Windows NT) dan juga Network shell (semacam Virtual Network Computing (VNC) atau Remote Desktop Protocol (RDP)).
5 Session layer Berfungsi untuk mendefinisikan bagaimana koneksi dapat dibuat, dipelihara, atau dihancurkan. Selain itu, di level ini juga dilakukan resolusi nama.
4 Transport layer Berfungsi untuk memecah data ke dalam paket-paket data serta memberikan nomor urut ke paket-paket tersebut sehingga dapat disusun kembali pada sisi tujuan setelah diterima. Selain itu, pada level ini juga membuat sebuah tanda bahwa paket diterima dengan sukses (acknowledgement), dan mentransmisikan ulang terhadp paket-paket yang hilang di tengah jalan.
3 Network layer Berfungsi untuk mendefinisikan alamat-alamat IP, membuat header untuk paket-paket, dan kemudian melakukan routing melalui internetworking dengan menggunakan router dan switch layer-3.
2 Data-link layer Befungsi untuk menentukan bagaimana bit-bit data dikelompokkan menjadi format yang disebut sebagai frame. Selain itu, pada level ini terjadi koreksi kesalahan, flow control, pengalamatan perangkat keras (seperti halnya Media Access Control Address (MAC Address)), dan menetukan bagaimana perangkat-perangkat jaringan seperti hub, bridge, repeater, dan switch layer 2 beroperasi. Spesifikasi IEEE 802, membagi level ini menjadi dua level anak, yaitu lapisan Logical Link Control (LLC) dan lapisan Media Access Control (MAC).
1 Physical layer Berfungsi untuk mendefinisikan media transmisi jaringan, metode pensinyalan, sinkronisasi bit, arsitektur jaringan (seperti halnya Ethernet atau Token Ring), topologi jaringan dan pengabelan. Selain itu, level ini juga mendefinisikan bagaimana NetworkInterface Card (NIC) dapat berinteraksi dengan media kabel atau radio.